Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein.

نویسندگان

  • Yong Wang
  • Xiakun Chu
  • Sonia Longhi
  • Philippe Roche
  • Wei Han
  • Erkang Wang
  • Jin Wang
چکیده

Numerous relatively short regions within intrinsically disordered proteins (IDPs) serve as molecular recognition elements (MoREs). They fold into ordered structures upon binding to their partner molecules. Currently, there is still a lack of in-depth understanding of how coupled binding and folding occurs in MoREs. Here, we quantified the unbound ensembles of the α-MoRE within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein. We developed a multiscaled approach by combining a physics-based and an atomic hybrid model to decipher the mechanism by which the α-MoRE interacts with the X domain of the measles virus phosphoprotein. Our multiscaled approach led to remarkable qualitative and quantitative agreements between the theoretical predictions and experimental results (e.g., chemical shifts). We found that the free α-MoRE rapidly interconverts between multiple discrete partially helical conformations and the unfolded state, in accordance with the experimental observations. We quantified the underlying global folding-binding landscape. This leads to a synergistic mechanism in which the recognition event proceeds via (minor) conformational selection, followed by (major) induced folding. We also provided evidence that the α-MoRE is a compact molten globule-like IDP and behaves as a downhill folder in the induced folding process. We further provided a theoretical explanation for the inherent connections between "downhill folding," "molten globule," and "intrinsic disorder" in IDP-related systems. Particularly, we proposed that binding and unbinding of IDPs proceed in a stepwise way through a "kinetic divide-and-conquer" strategy that confers them high specificity without high affinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded.

Measles virus is a negative-sense, single-stranded RNA virus within the Mononegavirales order,which includes several human pathogens, including rabies, Ebola, Nipah, and Hendra viruses. The measles virus nucleoprotein consists of a structured N-terminal domain, and of an intrinsically disordered C-terminal domain, N(TAIL) (aa 401-525), which undergoes induced folding in the presence of the C-te...

متن کامل

The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein.

The nucleoprotein of measles virus consists of an N-terminal moiety, N(CORE), resistant to proteolysis and a C-terminal moiety, N(TAIL), hypersensitive to proteolysis and not visible as a distinct domain by electron microscopy. We report the bacterial expression, purification, and characterization of measles virus N(TAIL). Using nuclear magnetic resonance, circular dichroism, gel filtration, dy...

متن کامل

Probing structural transitions in the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by vibrational spectroscopy of cyanylated cysteines.

Four single-cysteine variants of the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) were cyanylated at cysteine and their infrared spectra in the C triple bond N stretching region were recorded both in the absence and in the presence of one of the physiological partners of N(TAIL), namely the C-terminal X domain (XD) of the viral phosphoprotein. Consiste...

متن کامل

Intrinsic disorder in measles virus nucleocapsids.

The genome of measles virus is encapsidated by multiple copies of the nucleoprotein (N), forming helical nucleocapsids of molecular mass approaching 150 Megadalton. The intrinsically disordered C-terminal domain of N (N(TAIL)) is essential for transcription and replication of the virus via interaction with the phosphoprotein P of the viral polymerase complex. The molecular recognition element (...

متن کامل

Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy.

Using site-directed spin-labeling EPR spectroscopy, we mapped the region of the intrinsically disordered C-terminal domain of measles virus nucleoprotein (N(TAIL)) that undergoes induced folding. In addition to four spin-labeled N(TAIL) variants (S407C, S488C, L496C, and V517C) (Morin et al. (2006), J Phys Chem 110: 20596-20608), 10 new single-site cysteine variants were designed, purified from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2013